http://www.rssboard.org/rss-specification 720 XTF Search Results (expand=subject;f1-subject=Gamma Ray Burst;f2-associated-Lesson=Gamma Ray Science) http://ecuip-xtf.lib.uchicago.edu/xtf/search?expand%3Dsubject;f1-subject%3DGamma%20Ray%20Burst;f2-associated-Lesson%3DGamma%20Ray%20Science Results for your query: expand=subject;f1-subject=Gamma Ray Burst;f2-associated-Lesson=Gamma Ray Science Thu, 01 Jan 1970 12:00:00 GMT Types of gamma-ray bursts (GRBs). http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/gamma-ray_bursts/gamma-ray_bursts.dc.xml This graphic illustrates the different sources and processes that result in long and short gamma-ray bursts. The left panel shows the collapse of a giant star that is thought to lead to a long GRB. The right panel shows the inspiral and coalescence of two neutron stars, which is thought to result in a short GRB. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/gamma-ray_bursts/gamma-ray_bursts.dc.xml Thu, 01 Jan 1970 12:00:00 GMT Typical Prompt GRB Spectrum. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/GLAST_GRB_multiwavelength/GLAST_GRB_multiwavelength.dc.xml The typical spectrum of a gamma burst delineates the spectral range of two instruments on the Fermi Space Telescope: the Gamma-ray Burst Monitor (GBM) and Large Area Telecope (LAT). http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/GLAST_GRB_multiwavelength/GLAST_GRB_multiwavelength.dc.xml Thu, 01 Jan 1970 12:00:00 GMT GRB 050709. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/grb050709/grb050709.dc.xml Gamma-ray bursts longer than two seconds are the most common type and are widely thought to be triggered by the collapse of a massive star into a black hole. As matter falls toward the black hole, some of it forms jets in the opposite direction that move near the speed of light. These jets bore through the collapsing star along its rotational axis and produce a blast of gamma rays after they emerge. This artist's rendering depicts a GRB that was discovered on July 9, 2005, by NASA's High-Energy Transient Explorer (HETE). http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/grb050709/grb050709.dc.xml Sat, 09 Jul 2005 12:00:00 GMT Artist’s visualization of a collapsar. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/165469main_403GRBCollapsarModelPar_NASAWebV_1/165469main_403GRBCollapsarModelPar_NASAWebV_1.dc.xml The collapsing star scenario that is one of the leading contenders as the cause of gamma-ray bursts. This artist's concept of the collapsar model shows the center of a dying star collapsing minutes before the star implodes and emits a gamma-ray burst that is seen across the universe. Many scientists say longer bursts (more than four seconds in duration) are caused by massive star explosions. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/165469main_403GRBCollapsarModelPar_NASAWebV_1/165469main_403GRBCollapsarModelPar_NASAWebV_1.dc.xml Thu, 01 Jan 1970 12:00:00 GMT Crashing Neutron stars can make gamma-ray burst jets. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/534058main_NS_six_panel_17/534058main_NS_six_panel_17.dc.xml Short gamma-ray bursts are difficult to study because they are so short. Less than 2 seconds is not a lot of time to find the burst and capture some data. These images show the merger of two neutron stars recently simulated using a new supercomputer model. Redder colors indicate lower densities. Green and white ribbons and lines represent magnetic fields. The orbiting neutron stars rapidly lose energy by emitting gravitational waves and merge after about three orbits, or in less than 8 milliseconds. The merger amplifies and scrambles the merged magnetic field. A black hole forms and the magnetic field becomes more organized, eventually producing structures capable of supporting the jets that power short gamma-ray bursts. http://ecuip-xtf.lib.uchicago.edu/xtf/view?docId=grxr/534058main_NS_six_panel_17/534058main_NS_six_panel_17.dc.xml Thu, 01 Jan 1970 12:00:00 GMT